Computing the Fréchet Gap Distance

نویسندگان

  • Chenglin Fan
  • Benjamin Raichel
چکیده

Measuring the similarity of two polygonal curves is a fundamental computational task. Among alternatives, the Fréchet distance is one of the most well studied similarity measures. Informally, the Fréchet distance is described as the minimum leash length required for a man on one of the curves to walk a dog on the other curve continuously from the starting to the ending points. In this paper we study a variant called the Fréchet gap distance. In the man and dog analogy, the Fréchet gap distance minimizes the difference of the longest and smallest leash lengths used over the entire walk. This measure in some ways better captures our intuitive notions of curve similarity, for example giving distance zero to translated copies of the same curve. The Fréchet gap distance was originally introduced by Filtser and Katz [19] in the context of the discrete Fréchet distance. Here we study the continuous version, which presents a number of additional challenges not present in discrete case. In particular, the continuous nature makes bounding and searching over the critical events a rather difficult task. For this problem we give an O(n5 logn) time exact algorithm and a more efficient O(n2 logn+ n2 ε log 1 ε ) time (1 + ε)-approximation algorithm, where n is the total number of vertices of the input curves. Note that for (small enough) constant ε and ignoring logarithmic factors, our approximation has quadratic running time, matching the lower bound, assuming SETH [10], for approximating the standard Fréchet distance for general curves. 1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, I.1.2 Algorithms, I.3.5 Computational Geometry and Object Modeling

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Discrete Fréchet Gap

We introduce the discrete Fréchet gap and its variants as an alternative measure of similarity between polygonal curves. We believe that for some applications the new measure (and its variants) may better reflect our intuitive notion of similarity than the discrete Fréchet distance (and its variants), since the latter measure is indifferent to (matched) pairs of points that are relatively close...

متن کامل

Partial Matching between Surfaces Using Fréchet Distance

Computing the Fréchet distance for surfaces is a surprisingly hard problem. It has been shown that it is NP-hard to compute the Fréchet distance between many nice classes of surfaces [God98], [Buc10]. On the other hand, a polynomial time algorithm exists for computing the Fréchet distance between simple polygons [Buc06]. This was the first paper to give an algorithm for computing the Fréchet di...

متن کامل

On computing Fréchet distance of two paths on a convex polyhedron

We present a polynomial time algorithm for computing Fréchet distance between two simple paths on the surface of a convex polyhedron.

متن کامل

Computing the Fréchet Distance between Folded Polygons

We present the first results showing that the Fréchet distance between non-flat surfaces can be approximated within a constant factor in polynomial time. Computing the Fréchet distance for surfaces is a surprisingly hard problem. It is not known whether it is computable, it has been shown to be NP-hard, and the only known algorithm computes the Fréchet distance for flat surfaces (Buchin et al.)...

متن کامل

ar X iv : 1 10 3 . 28 65 v 1 [ cs . C G ] 1 5 M ar 2 01 1 Computing the Fréchet Distance Between Folded Polygons 1

We present the first results showing that the Fréchet distance between non-flat surfaces can be approximated within a constant factor in polynomial time. Computing the Fréchet distance for surfaces is a surprisingly hard problem. It is not known whether it is computable, it has been shown to be NP-hard, and the only known algorithm computes the Fréchet distance for flat surfaces (Buchin et al.)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017